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OLIVIER MASBERNAT1 AND PASCAL GUIRAUD 3

1Laboratoire de Génie Chimique, UMR 5503 CNRS-INP-UPS, 5 rue Paulin Talabot,
31106 Toulouse Cedex 1, France
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We report experimental and numerical determinations of the breakup probability of
a drop travelling through inhomogeneous turbulent flow generated in a pipe down-
stream of a restriction. The model couples the Rayleigh–Lamb theory of drop oscilla-
tions with the Kolmogorov–Hinze theory of turbulent breakup. The interface deform-
ation is modelled by a linear oscillator forced by the Lagrangian turbulent Weber
number measured in experiments. The interface is assumed to rupture when either
(i) the instantaneous Weber number exceeds a critical value or (ii) the predicted
deformation exceeds a given threshold. Seven flow configurations have been tested,
corresponding to various Reynolds numbers, damping coefficients and drop volume
fractions. The history of the drop deformation proves to play an important role,
and simulations assuming a critical Weber number fail to reproduce the experiments.
Simulations assuming a critical deformation predict well the main features observed
in the experiments. The linear oscillator appears able to describe the main feature
of the dynamics of the drop deformation in inhomogeneous turbulence. Provided the
oscillation frequency and the damping rate are known, the model can be used to
compute the breakup probability in concentrated dispersed two-phase flows.

1. Introduction
The deformation of a drop (or bubble) in a turbulent flow combines two complex

physical mechanisms: turbulence and interfacial-tension-driven flows. The purpose
of this work is to determine the minimal description of these two mechanisms
required to predict the occurrence of drop breakup. The first major step was
achieved by Kolmogorov (1949) and Hinze (1955) who considered a drop immersed
in isotropic turbulence, its diameter d being larger than the Kolmogorov microscale.
The turbulence is accounted for only by the average turbulent stress τ t = ρcδu2(d),
where ρc is the density of the continuous phase and δu2(d) the mean square of
the velocity difference over a distance d . The drop response is characterized by the
restoring stress τi = σ/d generated by the surface tension σ . The breakup is assumed
to occur when the average turbulent Weber number We = τ tτ

−1
i exceeds a critical
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value. The validity of this approach is limited since it ignores the temporal response
of the interface to the unsteady turbulent forcing. The potential-flow Rayleigh–Lamb
theory (Lamb 1932) however describes the drop dynamics as a series of oscillators,
the principal mode of which is characterized by the frequency f2,

f2 =
1

2π

√
192σ

(3ρd + 2ρc)d3
, (1.1)

and the damping rate β2 (Miller & Scriven 1968),

β2 =
4(15µd + 40µc)

(3ρd + 2ρc)d2
, (1.2)

where ρd and µd (resp. ρc and µc) are the density and dynamic viscosity of the
dispersed (resp. continuous) phase. Risso & Fabre (1998) showed that two different
breakup regimes exist in turbulent flows. When the turbulent Weber number is large,
the breakup results from the interaction of the drop with a single intense eddy. When
the turbulent Weber number is small or moderate, individual turbulent eddies are not
able to break the interface. However, if the residence time tr of the drop in the turbulent
flow is larger than the drop response time f −1

2 , interactions with several successive
eddies may cause the breakup via stochastic resonance; the breakup probability then
depends on tr , f2, β2 and the turbulence time scales. Since the occurrence of breakup
in a turbulent flow generally depends on the residence time, the breakup probability
should be used instead of the critical Weber number (Risso 2000).

After the pioneering works by Ryskin & Leal (1984) and Kang & Leal (1989),
several authors have performed numerical simulations of a drop in various basic
flows in order to model its interaction with a single eddy: Shreekumar, Kumar &
Gandhi (1996), Rodrı́guez-Rodrı́guez, Gordillo & Martı́nez-Bazán (2006), Revuelta,
Rodrı́guez-Rodrı́guez & Martı́nez-Bazán (2006). The results of these simulations are
related to real turbulent situations by the use of the Kolmogorov–Hinze scaling, which
has been shown experimentally to correlate breakup statistics well when the Weber
number is large (see Lasheras et al. 2002, and references therein). On the other hand,
Kang & Leal (1990) have investigated the dynamics of a bubble in time-periodic
straining flows by both the analysis of an approximate dynamic model and direct
numerical simulations. To our knowledge, the only direct simulation considering a
realistic turbulence was done by Qian et al. (2006) who computed the deformation of
a drop in a homogeneous turbulence by using the lattice-Boltzmann method. Unfortu-
nately, due to the high computational cost, the number of simulations, their duration
and the domain size were drastically limited. At the present time, simpler models are
probably more relevant for improving our understanding of the turbulent breakup.

O’Rourke & Amsden (1987) developed a model for drop breakup based on the
forcing of shape oscillations by the turbulent flow. Known as the TAB model, it is
commonly used in numerical simulations of sprays. Following a similar approach,
Risso & Fabre (1998) computed the response of a single linear oscillator of frequency
f2 and damping rate β2 forced by the instantaneous Weber number, We(t) =
ρcδu

2(t)d/σ , measured in their experiment. The statistics of the deformation obtained
from these computations were found to be in good agreement with the experimental
results obtained with a bubble immersed in a homogeneous turbulent field under
microgravity conditions. Whereas it is important to describe accurately the temporal
evolution of the turbulence, a rather crude description of the interface seems to be
sufficient to predict the statistics of the deformation. The objective of this work is
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Phase ρ (kgm−3) µ (Pa s) σ (Nm−1)

Water 996 8.2 × 10−4 23.6 × 10−3

Water–glycerine 1100 4.7 × 10−3 24.4 × 10−3

Coloured heptane 683.7 4.5 × 10−4

Table 1. Properties of the liquids at 29◦C: density, ρ; dynamic viscosity, µ; interfacial tension
with coloured heptane, σ (σ = 30.0 × 10−3 Nm−1 for pure heptane and water–glycerine).

to check whether this conclusion remains valid (i) when a drop travels through an
inhomogeneous turbulent field and (ii) when it is surrounded by many other drops,
as it is the case in most dispersed two-phase flows. Recently, the behaviour of liquid
drops in the turbulent flow that develops downstream of an orifice in a pipe has
been investigated experimentally (Galinat et al. 2005, 2007). Both the single-drop case
and concentrated dispersed two-phase flows were investigated. They showed that the
breakup probability depends on the drop location in the inhomogeneous turbulent
field and cannot be accounted for by a single parameter, such as a global Weber
number. In the present paper, these experimental results are revisited. The breakup
probability is computed using model simulations similar to that of Risso & Fabre
(1998) in order to determine if the time scale f2 and β2 are sufficient to describe the
interface dynamics in situations (i) and (ii).

2. Experiments
The behaviour of a coloured drop of heptane has been investigated in four different

carrier flows: single-phase flows of either water (A) or water–glycerine mixture (B)
and dispersions of heptane drops in water–glycerine at volume fractions φ = 0.1 (C)
and φ = 0.2 (D). The concentration of glycerine dissolved in water (43 % in mass) is
adjusted to match the refractive indices of the two phases. In all case the two-phase
mixture is thus transparent, only the coloured drop being visible. Table 1 reports the
physical properties of the liquids. The experimental set-up and instrumentation are
detailed in Galinat et al. (2005, 2007). The test section is a vertical pipe of internal
diameter D = 30 mm with a concentric orifice of diameter Do = 15 mm. The region
under investigation extends from the orifice to 60 mm downstream. The velocity of
the continuous phase is measured by means of high-speed PIV within a plane section
passing through the pipe axis, with spatial and time resolutions of 0.55 mm and 0.5 ms.
A high-speed camera is used to film the coloured drop at 500 frames s−1 (figure 1).
The operating conditions are given in table 2. For the single-phase flow of water
(A), the bulk velocity of the continuous phase through the orifice is Uo = 0.60 m s−1,
which corresponds to a Reynolds number Reo = ρcUoD/µc = 11 × 103. For the three
other cases, two different bulk velocities have been investigated: Uo = 0.60 m s−1 and
Reo = 2.1 × 103 (B1, C1, D1), Uo = 0.90 m s−1 and Reo = 3.1 × 103 (B2, C2, D2). For
each flow configuration, coloured drops were injected individually upstream of the
orifice; breakup was never observed before the drop had passed through the orifice.
For the two-phase flows (C, D), an almost monodisperse and spatially homogeneous
population of non-coloured heptane drops is also injected upstream of the orifice
by means of an array of calibrated capillary tubes. The drop diameters are close to
2 mm, slightly changing with the flow rate.

Figure 2 shows the measured local average Weber number We for Uo = 0.60 m s−1

and d = 2.4 mm. The square of the velocity difference δu2(d) is calculated from the
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Figure 1. Drop shapes downstream of the orifice: near the orifice (left), intermediate shapes
(middle), after the breakup (right).

Water–glycerine
Continuous phase Water
case A B1 B2 C1 C2 D1 D2

φ 0 0 0 0.1 0.1 0.2 0.2
Uo (m s−1) 0.6 0.6 0.9 0.6 0.9 0.6 0.9
dexp(mm) 2.5 2.2 2.3 1.8 1.8 2.0 1.9
d (mm) 2.4 2.4 2.4 1.9 1.9 1.9 1.9
ξ 0.024 0.113 0.113 0.127 0.127 0.127 0.127

Table 2. Operating conditions for experiments and numerical simulations: volume
concentration of heptane drops, φ; bulk orifice velocity, Uo; average drop diameter in
experiment, dexp; drop diameter in simulations, d; damping coefficient, ξ .

instantaneous fluctuating velocity u(x, y), i.e. after subtraction of the mean velocity
U(x, y) defined as the maximum of these of values in four directions (vertical x,
transversal y and diagonals). In the radial direction there are strong mean-velocity
gradients, but they do not generate pressure gradients and therefore do not contribute
to the dynamic pressure ρcδu

2(d). They might nevertheless cause drop deformations by
generating a viscous stress, the amplitude of which is given by the capillary number,
CaU = µcdσ −1∂Ux/∂y. In the axial direction, the flow deceleration on the axis just
downstream of the orifice also generates pressure variations that might deform the
drop, with magnitude characterized by the Weber number WeU = ρcd

3σ −1(∂Ux/∂x)2.
In all cases the deforming stresses induced by the mean flow are about two orders of
magnitude smaller than that induced by the turbulent dynamic pressure. Turbulence
is therefore the only cause of drop deformation for the drop diameters considered,
which are much larger than the Kolmogorov microscale (a few tens micrometres) and
slightly smaller than the turbulent integral length scale (about 3 mm).

Figure 2 shows that the regions of large turbulent intensities (i.e. large We) of
the three cases are different, indicating that the flow structure depends on both
the Reynolds number and the drop volume fraction. We also observe that breakup
locations (denoted by white crosses) coincide with the regions of large We. For the
single-phase flow of water (A), breakup occurs at the periphery of the jet that develops
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Figure 2. Measured average turbulent Weber number for Uo = 0.6m s−1: single-phase flow
of water (A) and water–glycerine (B1); two-phase flows at φ = 0.1 (C1) and φ = 0.2 (D1).
The symbols denote breakup locations.

just downstream of the orifice and also further downstream where the turbulence has
diffused in the central region of the pipe. In case B1, no breakup is observed close to
the orifice. In two-phase flow case at φ = 0.1 (C1), breakup events are distributed all
along the pipe, whereas at φ = 0.2 (D1), they are concentrated close to the orifice.

3. Modeling and simulations of drop dynamics
Experimental results have shown a strong relationship between the local structure of

the turbulence and breakup occurrences. We now determine the role of the interface
dynamics. Our approach consists of computing the behaviour of a drop in the
instantaneous velocity field of the continuous phase, U(x, y, t).

The drop centre is initially located 2 mm downstream of the orifice and its radial
position is randomly chosen in the range [−(Do − d)/2, (Do − d)/2] by assuming a
uniform probability per unit of area of the orifice. The time evolution of the drop
position x(t) is then calculated by assuming that the drop velocity is the sum of the
continuous-phase velocity plus a constant vertical drift velocity Ud ex:

dx(t)

dt
= U(x, y, t) + Ud ex, (3.1)

where ex is the unit vector opposite to gravity. Equation (3.1) is solved by using
experimental records of the velocity U(x, y, t). Since U is only measured in a vertical
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axial plane, we will assume that the drop trajectory is two-dimensional. The drift
velocity is calculated from experimental correlations of Augier, Masbernat & Guiraud
(2003): in single-phase flow, Ud is assumed to be the terminal rise velocity Vt of a
drop rising in a fluid at rest; in two-phase flow, the effect of the drop volume fraction
is accounted for by Ud = Vt exp(−4.6φ).

In all cases, the drift velocity Ud is less than 1
5
Uo and the drop motion is dominated

by the continuous phase velocity. We checked that the computed motion was in
agreement with the experiments: trajectories are similar and the average and standard
deviation of the drop velocity against the axial position are reproduced well. Note
that the combination of (3.1) with the correlations of Augier et al. (2003) does not
constitute a general model valid for other flow configurations: the important point
here is that it predicts well the drop residence time in each region of the present flow.

The deformation of the interface is characterized by the amplitude A2 of the second
spherical harmonic, which is the dominant eigenmode of the linear Rayleigh–Lamb
theory. It involves a periodic succession of lengthening and flattening at frequency
f2 and damping rate β2 (see Risso 2000). The turbulence force responsible for drop
deformation is assumed to be proportional to the product of the instantaneous
Kolmogorov–Hinze stress τt and the drop area. The mass of fluid set in motion by the
drop oscillation is propotionnal to σ/(4π2f 2

2 ) = (3ρd + 2ρc)d
3/192 and the interface

dynamics described by

σ(
4π2f 2

2

) d2A2

dt2
+

2β2σ(
4π2f 2

2

) dA2

dt
+ σA2 = Kρcδu

2(d, x, y, t)d2. (3.2)

After normalizing the amplitude A2 by d , the time t by 1/(2πf2) and marking the
dimensionless quantities with a tilde, (3.2) becomes

d2Ã2

dt̃2
+ 2ξ

dÃ2

dt̃
+ Ã2 = K

ρcδu
2d

σ
= K We(d, x, y, t̃), (3.3)

where ξ = β2/(2πf2) is the damping coefficient and We(d, x, y, t̃) is the instantaneous
turbulent Weber number at instant t̃ obtained from the PIV record at the drop
location x(t̃). The system (3.1), (3.3) is solved numerically by using a first-order
scheme with a time step δt̃ = 2π × 10−3 and for a computational time 6π � t̃ � 14π,
allowing the drop to cross the measuring section. In agreement with experimental
observations the drop is initially assumed to be spherical (Ã2 = 0). We did not find
any theoretical approaches for determining the value of the prefactor K which arises
from the matching of the Rayleigh–Lamb theory with that of Kolmogorov–Hinze.
However, since (3.3) is linear, the simulations have been done with K set to unity
without lost of generality; this simply means that we computed Ã2/K instead of Ã2.
The values of f2 and β2 have been calculated by inserting the experimental physical
properties into the theoretical expressions (1.1) and (1.2). The damping coefficient ξ

is given in table 2; that for water–glycerine is about twice that for water.
Two different breakup criteria have been tested. The first postulates that the drop

ruptures when the instantaneous Weber number exceeds a critical value: We(t̃) > Wec.
This criterion accounts for the inhomogeneous character of the turbulence but
ignores the time response of the interface to the turbulent forcing. In this case,
the instantaneous deformation is considered to be proportional to the instantaneous
Weber number. The second criterion postulates that breakup occurs when the
deformation exceeds a critical value: Ã2(t̃) > Ã2c. In both cases, the critical value,
Wec or Ã2c/K , is the only adjustable parameter.

Figure 3 presents two examples of computed deformation corresponding to the
single-phase flow of water (A) and water–glycerine (B1) at Uo = 0.60 m s−1. The
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Figure 3. Numerical simulations of single-phase flow at Uo = 0.6 m s−1: (A) water,
(B1) water–glycerine. Thin lines: We(t); thick lines Ã2(t̃)/K .

experimental signal We(t̃) contains frequencies much higher than f̃ 2 = 1/(2π). Since
these frequencies are filtered by the dynamical system (3.3), Ã2(t̃) is smoother and
exhibits dominant oscillations at frequency f̃ 2. These two examples show that the
drop deformation may evolve differently than the Weber number. In case A, Ã2(t̃)
regularly increases due to stochastic resonance whereas We(t̃) fluctuates around a
constant mean value. In case B1, Ã2(t̃) cannot follow the large variations of We(t̃).
Two hundred numerical simulations have been carried out for each experimental
configuration. Denoting the axial position of a drop relative to the orifice as x, we
defined the probability F (X) that a drop splits off while x belongs to the interval
[0,X]. F (X) starts from zero at X = 0 and then characterizes the increase of the
breakup probability with the distance from the orifice. It has been calculated for each
flow configuration and breakup criterion. From these two examples, we anticipate
that the two breakup criteria will lead to significantly different results.

4. Results and discussion
We now compare the computed and experimental breakup probabilities to

determine whether the present model can deal with the various flow configurations
investigated, characterized by different Reynolds numbers, damping rates and drop
volume fractions.

Let us consider first single-phase flow cases. Thick lines in figure 4 show the
experimental breakup probability for water (A) and water–glycerine (B1) flows at
Uo = 0.6 m s−1. The two situations are very different since in water (Reo = 11 × 103)
the probability starts increasing just beyond the orifice, whereas in water–glycerine
(Reo = 2.1 × 103) it remains null up to x = 3 cm. Thin lines in figure 4 represent the
breakup probability computed with the criterion based on a critical Weber number
for Wec = 30, 35 and 40. In water (A), the evolution of F (X) is reasonably well
reproduced for Wec = 20. However, in water–glycerine (B1), the simulations fail to
predict the absence of breakup in the region close to the orifice. Therefore, although
the location of breakup events is observed to coincide with the regions of large We

(figure 2), breakup occurrence does not depend only on the instantaneous value of
We.

Thick lines in figure 5 again show the experimental breakup probability for single-
phase flow of water at Uo = 0.6 m s−1 (A) and water–glycerine at Uo = 0.6m s−1 (B1)
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Figure 4. Breakup probability F (X) in single-phase flow at Uo = 0.6 m s−1: (A) water; (B1)
water–glycerine. Thick lines: experiments. Thin lines: numerical simulations assuming a critical
Weber number, Wec = 30 (dashed line), 35 (solid line) or 40 (dot-dashed line).
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Figure 5. Breakup probability, F (X), in single-phase flow: (A) water and (B1) water–glycerine
at Uo = 0.6 m s−1; (B2) water–glycerine at Uo = 0.9 m s−1. Thick lines: experiments. Thin lines:
numerical simulations assuming a critical deformation, Ã2c/K =20 (dashed line), 25 (solid
line) or 30 (dot-dashed line). Symbols: numerical simulation for Ã2c/K = 25 with a smaller
damping, ξ = 0.024.

and at Uo = 0.9 m s−1 (B2). Thin lines now represent the breakup probability computed
by assuming a criterion based on the instantaneous deformation, for Ã2c/K = 20, 25
and 30. In case A the breakup probability predicted with this criterion is quite
similar to that obtained with the Weber criterion, and is close to the experimental
one for Ã2c/K = 20. On the other hand, in case B1, the results obtained with the
amplitude criterion are much better: the absence of breakup close to the orifice is now
reproduced well, the best agreement with the experimental results being obtained for
Ã2c/K close to 25. With the same value of Ã2c/K , the model also reproduces well the
very different evolution of F (X) observed at a larger velocity in water–glycerine (B2).
The description of the drop dynamics by the forced linear oscillator (3.3) together with
the breakup criterion based on a critical deformation is hence sufficient to predict the
different evolutions of the breakup probability observed in the present configurations.
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Figure 6. Breakup probability, F (X), in two-phase flow: φ = 0.1 (C1) and φ = 0.2 (D1) for
Uo = 0.6 m s−1; φ = 0.1 (C2) and φ = 0.2 (D2) for Uo = 0.9 m s−1. Thick lines: experiments.
Thin lines: numerical simulations assuming a critical deformation, Ã2c/K =25 (dashed line), 30
(solid line) or 35 (dot-dashed line). Symbols: simulation for Ã2c/K = 25 with a larger damping
rate, ξ = 0.16.

Note that between cases A (Reo =2.1 × 103, ξ = 0.024) and B1 (Reo = 2.1 × 103,
ξ = 0.113), both the flow structure and the damping coefficient have been changed.
To disentangle their effects, we have computed the breakup probability of case
B1 by taking the value of the damping coefficient corresponding to case A. The
corresponding result for Ã2c/K = 25 is represented by the symbols in figure 5.
Decreasing the damping coefficient from 0.113 to 0.024 increases the breakup
probability, changing the curve obtained for Ã2c/K = 25 into approximately that
obtained for Ã2c/K = 20. Even though the deformation is driven by inertia, viscosity
influences the breakup probability by fixing the damping rate of drop oscillations.
However it is worth noting that the effect of the damping rate is not enough strong
to change the behaviour of case B1 into that of case A.

We now address concentrated two-phase flows, in which the test drop is surrounded
by many other drops that may influence its dynamics. Figure 6 shows the breakup
probability for two drop volume fractions (φ = 0.1 and 0.2) and two flow velocities
(Uo = 0.6 and 0.9 m s−1). In all cases the experimental breakup probability (thick
line) is reasonably well reproduced by the simulations (thin line) assuming a critical
amplitude Ã2c/K between 25 and 35. Although the differences in the flow structure
between the four cases have been accounted for by using the corresponding measured
We(t), the theoretical expressions (1.1), (1.2) used for calculating the oscillation
frequency and damping rate do not include the possible effect of drop interactions.
In the absence of any available theory, we have performed additional simulations
with various values of the damping rate. Symbols in figure 6 represent the probability
computed for case D1 (φ =0.2, Uo =0.6 m s−1) by using ξ = 0.16 (instead of ξ = 0.127).
With this particular value of ξ , the computed probability matches the experiments
for the same critical amplitude as in single-phase flow (Ã2c/K = 25).

Risso & Fabre (1998) showed that the model (3.3) which couples Rayleigh–
Lamb theory of drop oscillation with the Kolmogorov–Hinze theory of turbulent
breakup contains the main physics of the interface deformation for a bubble in a
homogeneous turbulent field. The present results extend its validity to the case of a
drop travelling through an inhomogeneous turbulent field and to that of concentrated
drop dispersions. Assuming that breakup occurs for a given deformation is therefore in
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agreement with the experiments of Risso & Fabre (1998) and the present observations.
Here, the drop length at breakup is about twice the initial diameter (Ã2c ≈ 1),
which implies that the prefactor K in (3.3) should be set to about 1/25 for the
computed amplitude A2 to represent the maximal drop extension. Investigations of
other configurations are required to determine whether K may depend on the structure
of the turbulent flow and on the deformation time scales. For concentrated dispersions,
theoretical expressions for f2 and β2 accounting for drop interactions are also needed.

This work was jointly sponsored by Institut Français du Petrole (IFP) in Rueil-
Malmaison and the research group FERMaT in Toulouse. The authors would like
to thank Christine Noik and Christine Dalmazzone from IFP who supported this
research programme.
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